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Abstract

A multiple-scale k-e turbulence model is developed to calculate the development

of the transitional fiat-plate boundary layer under elevated freestream turbulent conditions.

The model uses the split-spectrum concept which divides the energy spectrum into low

and high wavenumber regions, each of which have their own modeling equations.

Damping functions are used to accommodate the near-wall and transitional behaviors.

The model constants are determined from the exact solutions of the simplified model

equations for the cases of grid turbulence flow, homogeneous shear flow, and the near-

wall equilibrium turbulent flow. By this calibration, the model constants are automatically

tuned to the characteristics of the freestream energy spectrum.

The results show that the partition of the energy spectrum in the freestream also

affects the transition location. A spectrum partitioning parameter S8 is identified whose

optimal value correlates with freestream turbulence level. Comparison with five different

sets of experimental data shows that the multiple-scale model with the optimal values of Sg

emulates many features of the transitional boundary layer. The start of transition can be

predicted reasonably well, however the length of the transition zone is consistently shorter

than in the experiments. The present model is insensitive to the shape of the initial

turbulence energy and dissipation profiles.
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CHAPTER ONE

INTRODUCTION

1.1 Overview of Transitional Boundary Layer

The transition process from laminar to turbulent flow within the boundary layer

has been of interest for a long time. The understanding of the transitional boundary

layer is important in many fields, including that of gas turbine engines (see Mayle,

1991, and Walker, 1993). For example, the accurate prediction of laminar-turbulent

transition can prevent the overprediction of losses in turbomachinery blade rows.

Since the flow is transitional on a turbine blade and since the fully turbulent heat

transfer rate is many times larger than the laminar one, transition always plays an

important role in turbine blade heat transfer.

The transitional boundary layer is a very complicated phenomenon. Since the

classical experiment of Reynolds in 1883, a lot of questions still remain unanswered.

Even after more than a century there is no general theory which can completely

describe the transition process.

For boundary layer flow over a smooth surface with very low freestream

turbulence intensity (Tu<0.03% referenced to the mean freestream velocity), an

imposed disturbance (such as freestrearn vorticity or sound) through a receptivity

process excites the normal modes of the flow and causes disturbed motion inside the



2

boundary layer. The normal mode behavior can be described by linear stability theory

which predicts the growth rates of the amplified disturbance and the critical Reynolds

number, below which the flow is stable. The initial instability often occurs as two-

dimensional Tollmien-Schlichting (T-S) waves traveling in the mean flow direction.

However, spanwise variations soon appear showing three-dimensional effects. These

result from secondary instabilities giving rise to A-vortices and begin a cascading

breakdown of T-S waves into smaller units. The breakdown is accompanied first by

the appearance of three-dimensionality and frequency spikes, then by decreasing

spanwise non-uniformity and spectral broadening until the frequency spectrum

approaches the full randomness. This may be accompanied by turbulence bursts at

random times and locations near the wall, as the flow is becoming fully turbulent. In

many natural circumstances, or when disturbances are artificially introduced, turbulent

spots could appear in this final stage. The spot grows in both streamwise and lateral

directions, eventually merging with neighboring spots and coalescing into a fully

turbulent flow. This final stage of the transition scenario is represented by sharp

increases in skin fiiction coefficient and Stanton number if heat transfer is involved.

Although the onset of transition can be defined in different ways, in this work, the

onset of transition is defined as the departure of the friction coefficient from its laminar

value. Thus, the onset of transition from the leading edge of the flat plate is far

downstream of the first appearance of T-S waves.

For elevated freestream turbulence, the initial disturbance can be sufficiently

large so that transition evolves without T-S waves and the transition process is

essentially non-linear. The terminology "bypass transition" was first introduced by

Morkovin (1979) to describe this phenomenon. A classical experiment of bypass



transition is the fully developed PoiseuiUe pipe flow by Wygnanski and Champagne

(1973) and Wygnanski, Sokolov and Friedman (1975). In their experiments, transition

was initiated at low Reynolds number (2000 < Re < 2700) when a large disturbance

was introduced in the inlet section of the pipe. The effects of elevated freestream

turbulence for flat plate boundary layers were studied by many researchers. The

experiments of Blair and Werle (1980) and Blair (1981a and 1983a, b) show the

significant effect of ffeestream turbulence intensity (Tu) by large increases (up to

approximately 20% for Tu=6%) of both the skin friction coefficient and Stanton

number for fully turbulent boundary layers. These effects can be correlated by

freestream turbulence intensity, the turbulent length scale and the boundary layer

momentum thickness Reynolds number. The location of transition moves

progressively upstream with increasing Tu until it is ahead of the first row of measured

data. Suder, O'Brien and Reshotko (1988) studied bypass transition for unheated flat

plate boundary layers with Tu from 0.3% to 5%. For Tu greater than 0.65% the

bypass transition mechanism prevailed. Recently, Sohn and Reshotko (1991)

documented in detail the behavior in the transitional boundary layer over a heated flat

plate for Tu from 0.4% to 6%. From spectral measurements, T-S waves were

significant for Tu=0.4%. They were present but not significant for Tu=0.8% and

1.1%. For higher Tu cases, there was no evidence of occurrence of T-S waves. These

results are consistent with those reported by Kosorygin and Polyakov (1985).

The influence of freestream turbulence and pressure gradient on transition were

studied and correlation-type prediction m_hods were formulated by Van Driest and

Blumer (1963), Hall and Gibbings (1972) and Abu-Ghannam and Shaw (1980). All of

these correlations predict the start and end of transition as a function of local Reynolds



numberor momentum thickness Reynolds number for fi'eestream turbulence levels up

to 9%. Among these experiments, Abu-Ghannam and Shaw considered many

experimental data sets and developed a correlation without bias to any particular set of

data they used, but the correlation is biased against the quiescent environment

condition. For very high freestream turbulence levels, transition is moved even further

upstream. Thole (1992, Tu=10 to 20%), and Maciejewski and Moffatt (1992a and

1992b, Tu=20 to 60%) show only fully turbulent flow. The transition is not captured

in their data.

The effects of favorable pressure gradient (accelerating flow) on transitional

boundary layer with elevated fTeestream turbulence has been widely studied by Blair

(1981b, 1983a, b and 1992a, b), Rued and Witting (1985), Volino and Simon (1991),

and Keller (1993). The pressure side of a turbine blade or vane experiences a strong

acceleration along the blade length. Favorable pressure gradient causes stretching of

the turbulent eddies, delaying the onset of transition, extending the length of the

transition zone and diminishing the surface heat transfer rate. On the suction side of a

turbine blade, the first haft chord length is in strong acceleration. After reaching the

minimum pressure, the flow experiences a mild adverse pressure gradient (decelerated

flow). The experiment of Gostelow and Blunden (1989) shows that transition lengths

are greatly reduced even in weak adverse pressure gradient which they attribute to a

strong increase in turbulent spot rate.

It is known that surface curvature has an effect on transition. A convex

surface can destroy the large scale eddies and delay the transition process. On a

concave surface, the turbulent eddies penetrate and augment transport across the



boundary layer more effectively than for the flat plate boundary layer. It is a

destabilizing effect that promotes transition. Wang and Simon (1984 and 1987)

investigated two levels of turbulence (Tu=0.68 and 2%) on a convex surface. They

found that the curvature on a convex surface (mdius=180 cm) has less influence on

transition than freestream turbulence intensity. When a smaller radius of curvature

(radius=90 cm) was used, there was no further delay in transition. Kim, Simon and

Russ (1991 and 1992) studied the transitional boundary layer on a concave surface.

Gonler vortices were observed in both laminar and turbulent flow for low level

freestream turbulence. This confirmed the earlier experiment of Barlow and Johnston

(1988a and 1988b). But there is no evidence of coherent vortices for high turbulence

intensity (Tu=8.6%).

It is widely accepted that transitional and turbulent boundary layers are

intermittent. The outer intermittent region of fully turbulent boundary layers have

been studied extensively by Corrsin and Kistler (1955), Fiedler and Head (1966),

Kovasznay et al. (1970), Blackwelder and Kovasznay (1972), and Hedley and Keffer

(1974). After the turbulent spot was discovered by Emmons (1951), the transitional

boundary layer was considered as a coexistence of laminar and turbulent flows.

Emmons provided a parameter called "interrnitteney" for the fraction of time the flow

is turbulent. The time-averaged quantities were calculated by superposition of local

turbulent and non-turbulent quantities. Schubauer and Klebanoff (1955) measured

turbulent spot propagation and recorded the streamwise intermitteney distribution.

Dhawan and Narasimha (1958) revised Emmons' model and provided a so called

"universal intermittency distribution" for a transitional boundary layer. Although the

intermittency is a function of both the streamwise distance and the normal distance,
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Dhawanand Narasimha claim the latter has only a secondary effect. An excellent

review of intermittency as a feature of laminar-turbulent transition can be found in

Narasimha (1985).

Recently, Kuan (1987), Sohn and Reshotko (1991) and Young et al. (1993)

have recognized that the turbulent and non-turbulent parts in a boundary layer are not

fully-turbulent flow and Blasius flow respectively, but turbulent-like and laminar-like

behavior. Sharma et al. (1982) and Walker and Gostelow (1990) measured the

intermittency distribution in adverse pressure gradient, and indicated that the

intermittency in the transitional flow was independent of the pressure gradient. The

use of intermittency in estimating transitional behavior in gas turbine engines is

discussed by Mayle (1991) and Walker (1993).

1.2. Overview of Turbulence Models

Transition prediction methods based on the classical linear/non-linear stability

analysis, although widely used, cannot describe the evolution of transition for elevated

freestream turbulence levels. From the measurements of Suder et al. (1988) and by

Sohn et al. (1991) for Tu > 1%, one should note that the disturbance spectra are of

turbulent character even while the mean flow is still laminar. It is therefore thought

appropriate to use turbulent flow methods to simulate the transitional boundary layer.

These methods use the Reynolds-averaged equations with closure approximations to

calculate the turbulent quantities from the pre-transition flow to fully turbulent flow.



Thesemethods are considered here in attempting to mimic the transitional boundary

layer.

The first and simplest model used in turbulent calculations is that based on the

Prandtl mixing length hypothesis. Considering shear layers with only one significant

turbulent stress u'v" and velocity gradient (OU/Oy), the shear stress can be formulated

through an eddy viscosity based on a mixing length lm:

(1-2)

The eddy viscosity is determined by the velocity scale Vt and length scale lm, and this

relationship is known as the Kolmogorov-Prandtl expression. The only unknown

parameter is the mixing length l m whose distribution over the flowfield has to be

prescribed by empirical data. From numerical testing of the model, a lot of experience

has been gathered for various flow conditions, in particular for wall boundary layers

(see Cebeci and Smith, 1974, Crawford and Kays, 1976).

Although the model has some success in fully turbulent flow, there are a few

shortcomings in this model when it is applied to transitional flow. First, because the

transition location and its process must be specified with the aid of correlations, the

model cannot by itself predict the onset of transition. Second, the model is based on

the assumption that the flow is in local equilibrium, that is, the turbulent energy is



dissipated at the same rate at any point of the flow. This means the turbulent energy at

one point cannot influence any other parts of the flow. Therefore, the model cannot

take the freestream turbulence into account. Third, the turbulent transport will be zero

wherever the mean velocity gradient is zero. This contradicts many experimental

results.

More general models require considering the transfer of turbulence within the

flow. To do so, we must introduce the transport equation of turbulence quantities.

The transport equation for a turbulent quantity 0 can usually be written as

Dt

Here, D/Dt is the substantial derivative, F O is the generalized diffusion coefficient and

S o is the net source. The equation describes the convection, diffusion and net

production of the quantity O- The more turbulent transport quantifies involved, the

more transport equations are used. The number of turbulence differential equations

used identifies the category of the n-equation model.

If velocity fluctuations are characterized by the square root of turbulent kinetic

energy k, we may overcome some of the limitations of the mixing length model. The

turbulent kinetic energy is a direct measure of normal stresses in three directions.

Thus most one-equation turbulence models employ a transport equation of turbulent

kinetic energy k,
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 Ffv+ (1--4)

In this equation, the left-hand-side is convection; the first term on right-hand-side is

diffusion; and Pk and e are the production and dissipation rate of turbulent kinetic

energy respectively. The coefficient o k is the effective ratio of the diffusion of

turbulent momentum to the diffusion of turbulent kinetic energy, and is assumed to be

constant. The dissipation rate e and turbulent viscosity are defined as

k3/2
e=CD (1-5)

,,,=cu u (,-6)

where CD and Cit are constants for high Reynolds number flow; L e and Lit are the

length scales that characterize the flow. These length scales are usually specified

empirically and are the same in the log-law regions. In the vicinity of a wall, they have

different roles: Lit as the length scale for viscosity and L e as for dissipation. Both are

formulated as functions of the normal distance from wall and are diminished by viscous

action. As for boundary conditions, wall functions cannot be used in transitional

boundary layer calculations because they are generated by log-region of the turbulent

boundary layer, which does not exist before transition. The major advantage of the

one-equation model is that the shear stress does not depend on mean velocity gradient.

An important shortcoming of the model is the inability to account for the transport

effect on the turbulence length scales. This is a direct consequence of the model's

assumption that length scale distributions are prescribed empirically.
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McDonald and Fish (1973) used the integral k equation to study freestrearn

turbulence and surface roughness effects in transitional boundary layers. Empirically

based formulae were used to input values of the dissipation length scale, the mixing

length and a number of the structure coefficients that were required in the formulation.

A damping factor was used to control the length scale within the viscous sublayer,

which in turn controlled the transition. They obtained very good agreement between

experiment and prediction. However, Daniels and Browne (1981) applied the model

on a gas turbine blade and found that the method did not show improvement over the

mixing length model.

The two-equation turbulence model usually uses the equation of turbulent

kinetic energy and a transport equation of some other turbulent quantity to relate to

the length scale. The choice of variable in the length-scale-determining equation is

very wide. It could be the turbulent dissipation rate e, pseudovonicity co, turbulent

time scale z, length scale 1, or their combination, such as kl and oJ2. These variables

are related to each other, thus the equation can be transformed from one to another

with the modification of source terms. Among these two-equation models, the k-e

model is currently the most popular one for turbulence closure. The dissipation rate e

and its equation are usually defined as

f ' 0_' x2

(1-7)

vt Oe e
(1-8)
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At high Reynolds number, the dissipation rate is related to the turbulent vorticity and

is called "isotropic dissipation". The transport equation represents physical effects

analogous to those in the k equation, that is, the convection of e is balanced by

diffusion and by production and destruction processes.

Equations (1-4) and (1-8) constitute the k-e model which employs the

Boussinesq eddy viscosity concept and relates the eddy viscosity to k and e via the

Kolmogorov-Prandtl formula:

a<+euJ)_zs,,k
-Itiuj=vt J 3

(1-9)

k 2
_ (l-lO)

vt = C_Vt L = CtJ e

where the velocity scale Vt is defined as _ and length scale L is ks/2/e. The original

k-e model is devised for high Reynolds number flow in which effects of molecular

viscosity are unimportant. In regions dose to walls, the character of the motion is

significantly changed. Jones and Launder (1972, 1973) introduced the low-Reynolds-

number (LRN) form of the k-e model which accounts for the near-wall effect and

allows continuous computation from the freestream to the wall. The modification

basically damps the production/destruction terms of the e equation and the eddy

viscosity. After Jones and Launder's modification, a lot of LRN k-e models were

proposed. Patel et al. (1985) systematically evaluated eight LRN k-e models and

showed that each model may have flaws in certain flows. They concluded that the k-E
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models of Launder and Sharma (1974), Chien (1982), Lam and Bremhorst (1981), and

the k-oJ 2 model of Wilcox and Kubesin (1980) yield comparable results and perform

considerably better than the others for fully turbulent boundary layers.

The standard k-e model is based on the assumption that the eddy viscosity is

the same for all components of Reynolds stress. For simple shear flow, this

assumption does not influence the calculation since the dominant Reynolds stress is

u'v" alone. For recireulation flows, the normal stress and shear stress are of the same

order in the momentum equations, but they are usually much smaller than the

convection and pressure terms. Therefore the nonisotropic nature of Reynolds stress

is unimportant in this case. However, in some flow situations, an anisotropic eddy

viscosity is necessary. The k-e. model must be modified by introducing nonlinear terms

in the linear Boussinesq approximation. Anisotropic k-e models, also called nonlinear

k-e models, have been proposed by Nisizima and Yoshizawa (1987), Speziale (1987)

and Myong and Kasagi (1990). To the best of the author's knowledge, these models

have not yet been used for transitioning boundary layers.

Jones and Launder (1973) explored the capability of the LRN k-e model in

predicting transition in pipe flow and channel flow. Although showing excellent

agreement between experiment and predictions for laminar and fully turbulent regimes,

the calculated transition occurs at a too low a Reynolds number and is too abrupt.

Wilcox (1975, 1977) used Saffman and Wileox's k-of model for prediction of

the transitional boundary layer. The results show that the calculated start of transition

is in good agreement with the experimental data for eases with very low freestream
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turbulenceintensity. Danielsand Browne (1981) applied Wilcox's model to calculate

the heat transfer rate to a gas turbine blade. The transition region on the suction

surface is not well predicted. On the pressure surface, the agreement between

prediction and experiment is generally poor. They conclude that the model has no

obvious advantages over the mixing length models.

Wang, Jen and Hartel (1985) predicted the transitional flow on a flat plate with

high fi'eestream intensity (up to 10%) by the Jones and Launder LRN k-e model. No

experimental data within the transition regime were compared. They also applied the

model on turbine airfoils. Their predicted heat transfer coefficients on the pressure

side of the airfoil agree well with experimental data. On the suction side of airfoil, the

heat transfer is overpredicted for transitional and turbulent regions.

Rodi and Scheuerer (1985) studied the flow over a turbine blade using the Lam

and Brernborst (1981) LRN k-e model. The initial profiles of k and e were proposed

from empirical correlations. They are the first to calculate the freestream values of k

and e from the simplified k and e equations. The model gives general agreement with

experiment at a relatively high level of ffeestream turbulence and with pressure

gradient. The results also show that the onset of transition is well predicted, but the

length of transition is consistently under-predicted.

Sehmidt and Patankar (1988) modified the production term of the turbulent

kinetic energy equation in the Lam and Bremhorst LRN k-e model. The limited

production of turbulent kinetic energy controlled the onset and progress of transition.

The model was referred to as the Production Term Modification (PTM) model. The
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PTM model parameters were calibrated with freestream turbulent intensity to match

the correlation of Abu-Ghannam and Shaw (1980). The comparison of PTM model

prediction with the experimental flat plate data and turbine blade data is excellent even

in the transition region. They also demonstrated that the sensitivity to starting location

and initial profiles ofk and e is largely reduced. Sullivan (1988) coupled the Chien k-e

model with an intermittency model and the PTM model to investigate transitional flow

of flat plate and circular cylinder flows. He obtained good prediction of transition for

the flat plate but generally poor agreement for the start of transition on the cylinder.

Although the PTM model has given reasonable results in transitional boundary layers,

it is basically an ad hoc model. For the elevated turbulence environment, the turbulent

kinetic energy is gradually diffused from the freestream to the boundary layer. The

PTM model does not provide for this process but correlates the turbulent production

to freestream turbulent intensity. In other words, the PTM does not actually reflect

the trang_rt features of the transitional boundary layer in an elevated freestream

turbulence environment.

Recently, Fujisawa (1990) evaluated five different LRN k-e models, namely

Launder and Sharma (1974), Chien (1982), Lain and Bremhorst (1981), Nagano and

I-Iishida (1987), and Myong and Kasagi (1988) in the calculation of transitional

boundary layers with freestream turbulence. He found that the Launder and Sharma

model gives better performance than the other models, but fails to reproduce the

pressure gradient effect. Savill (1990) compiled 16 turbulence models to simulate two

benchmark tests, T3A and T3B, issued by the European ERCOFTAC science

committee. He concluded that the skin friction Cf and shape factor H are best

described by the Launder and Sharma k-e model within the two-equation turbulence
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model category. The common discrepanciesof the predictionsby two equation

models are that the peak Cf (overshoot) is not captured; the prediction of transition

length is rather too short; and the fully turbulent level of Cf is only approached

asymptotically from below.

The work of Yang and Shih (1992) suggests that a new time scale based k-e

formulation with an intermittency factor can improve the prediction of the transitional

boundary layer. The intermittency factor used by Yang is defined by a correlation with

the boundary layer shape factor through the transition region. They also point out that

the Launder-Sharma model does not predict fully turbulent boundary layers very well,

although it has better capability in transition zone prediction.

To describe the intermittent character in turbulent flow, the conditioned

continuity, momentum, energy and intermittency factor equations were developed by

Byggstoyl and Kollmarm (1981, 1986), Vaneoillie and Dick (1988), and Cho and

Chung (1992). The model contains the equations for intermitteney factor, the

turbulent zone and non-turbulent zone mean velocities, and turbulent kinetic energy

and dissipation rate for the turbulent zone. Simon and Stephens (1991), followed the

development of Vancoillie and Dick, using the intermitteney factor in conditioned

transport equations and a LRN k-e model. The intermittency factor is prescribed

algebraically and based on the knowledge of the transition length. Simon and

Stephens adopted the approach of Narasimha (1985) which expressed the transition

length in terms of the transition Reynolds' number and a turbulent spot formation rate

from experiments. The results in general are in good agreement with experimental
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data. But, so far the predictions are only for zero pressure gradient boundary layers

with elevated turbulence environment.

In the conditioned turbulence modeling, if the intermittency factor of transition

is not known beforehand, we must instead solve the differential equation of

intermittency factor. Since the equation is based on the dynamics of the interface

between turbulent and non-turbulent zones for flee boundary shear flow, the

distinction of turbulent/non-turbulent zones is not clear if the turbulence is of small

amplitude in the low and high frequency ranges simultaneously. Thus all the low

amplitude fluctuations (which are usually at high frequency) are eliminated by the

modeling itself. Furthermore, the evolution equation of the intermittency factor itself

is questionable because there is no physical basis for a conservation equation for

intermittency factor.

One of the turbulent characteristics that is not clearly represented by

conventional k-e models is the turbulent kinetic energy cascade. The large eddies,

which are associated with the low frequency fluctuations, are determined by the

boundary conditions of the flow and contribute most of the kinetic energy. On the

other hand, the small eddies are responsible for the energy dissipation. The kinetic

energy cascade means that the large eddies extract energy from the mean flow and

transfer it to the small eddies by vortex stretching.

Schiestel (1974) introduced a multiple-time-scale model while Hanjalic,

Launder and Schiestel (1980) developed a scheme in which the turbulent energy

spectrum is split into low, intermediate and high wave number regions, as illustrated in
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figure 1-1. The low wave number region or "production" region transfers spectral

energy to the high wave number region or "dissipation region". Between these two

regions, the energy is just transferred through it, thus it is called the "transfer region".

The kinetic energy within the production and transfer regions are kp and kt

respectively while the dissipation zone contains a negligible amount of turbulent

kinetic energy. The total turbulent kinetic energy k will be the sum of kp and k t . The

kinetic energy transfer rates _p and _t are associated with the energy out of the

production and transfer regions; the latter is equal to the energy dissipation rate t. In

single-point closure turbulence models, the energy transfer rates are simply _p = e,

that is the energy spectrum has no effect in the turbulence modeling. This is usually

not true however, particularly in boundary layer flow.

Under this split-spectrum concept, there will be four transport equations in

two-scale modeling to describe the turbulence, that is, two turbulent kinetic energy

equations and two energy transfer rate equations. The eddy viscosity stress-grain

formulation is still used in the model. As might be expected, the transport equations of

the lowest wave number region will have the same formulation as those in single-scale

k-e models. If the spectrum is split into more slices, the number of transport equations

are increased. Therefore, the two-scale approach is an extension of single-scale k-e

model that could involve more physics and bring some benefits within reasonable

computational costs.

Hanjalic et al. (1980) applied the multiple-scale concept to the decay of grid

turbulence passed through a sudden contraction; plane and axisymmetric jets; and fully

turbulent boundary layer. All the computational results show that the model gives
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striking improvement over those employing the single-scale concept. Fabris, Harsha

and Edelman (1981) tested the multiple-scale modeling of boundary layer flow for

scramjet application. An appreciable overall improvement of prediction was observed.

Kim and Chen (1987) calibrated the model coefficients by grid turbulence,

homogeneous shear flow and the equilibrium turbulent boundary layer. Kim applied

the model to many different problems (see Kim, 1988, 1991, 1992) and generally

compared favorably with the experimental data. Recently, Duncan, Liou and Shih

(1993) also calibrated the model by grid turbulence and homogeneous shear flow and

tested it for boundary-free turbulent shear flow. The results show that the model gives

good predictions.

In the calibration of model coefficients, Kim and Chert (1987) and Duncan ¢t

al. (1993) assumed that the grid turbulence obeys a decaying power law. The ratio of

the turbulent kinetic energy of production and transfer regions is kept constant. It

follows that one model coefficient can be obtained directly from the exact solution of

simplified turbulence model for grid turbulence. In homogeneous shear flow, both of

them assumed that the ratios of turbulent production to dissipation rate Pk let and the

energy transfer rate to dissipation rate ep/_:t are constants, so that

EP _P = m_eta_ct _--__met_C = constant (1-11)

With the help of experimental data, all. model coefficients can be determined in

Duncan's model. Since Kim developed the model with two more coefficients, he used

the equilibrium boundary layer (where the production equals to the dissipation rate) in
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providing two constraint conditions to determine these coefficients. In all models

mentioned above, the wall function was used when calculating the flow close to a wall.

In summary, review of literature reveals that the zero- and one-equation

models cannot predict the bypass transitional boundary layers very well. The LRN

two-equation model must have some modifications to mimic the behavior of

transitional boundary layers. The modification could be the PTM, the intermittency

factor to eddy viscosity, the intermittency model embedded in the conditioned

transport equations etc. On the other hand, the multiple-scale model gives promise

not only of a better description of the turbulence but also can represent the freestream

spectrum effects in prediction of the transitional boundary layer. However, all the

aforementioned multiple-time-scale k-e modeling are closely derived from the

Schiesters formulation without detailed evaluation. In this work, the model equations

will be derived from the two-point velocity correlation. With some different

assumptions, the final formulations are different from the other multiple-scale models.

The model coefficients are also calibrated from grid turbulence and homogeneous

shear flow but by exact solution of a simplified version of the model. As a result,

some of the model coefficients are not constants but depends on the spectrum shape of

the freestream turbulence. All of these will be developed in the next chapter.
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Figure 1-1 Description of the multiple-scale turbulence model.



CHAPTER TWO

MATHEMATICAL MODEL AND NUMERICAL METHOD

2.1 The Boundary Layer Equations

The problem considered is the region close to a solid wall where viscous

effects are as important as inertia effects. The viscous layer can be described by the

boundary layer equations in which viscous diffusion in the streamwise direction is

negligible compared to that in the transverse direction. The boundary layer equations

are derived from the Navier-Stokes equation by the order-of-magnitude technique.

The derivation of these equations can be found in many text books, and is not repeated

here.

For a two-dimensional incompressible turbulent boundary-layer flow, x is the

streamwise direction and y is the direction normal to the wall, the conservation of mass

and momentum can be written as follows:

c)U OV

-_-+-_-=o (2-1/

. Ou . Ou dP O( OU
ou--g+o,"N =--g+-_Lu_-_,,) (2-2)

I= _ ph-V+u_- u (2-3)

21
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where U and V are the time averaged mean velocities, p is the density, u' and v' are the

instantaneous velocity fluctuations, and the overbar implies the time average of the

fluctuation quantities. In the energy equation, h is the enthalpy, H is the total enthalpy

and is defined as

H=h+I u 2 (2--4)
2

Assuming that the gas is ideal and the specific heat of the gas is constant, the equation

of state and the static enthalpy can be written

P=pRr (2-5)

h=CpT (2-6)

Here, -pu'v" is the Reynolds stress and -ph'v" is the turbulent heat transfer rate. To

solve equations (2-1) to (2-3), we must use some empirical formulation for Reynolds

stress and turbulent heat transfer rate. By the Boussinesq assumption, we define the

turbulent eddy viscosity to relate the Reynolds stress to the mean flow field.

(2-7)
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An analogous quantity, the eddy diffusivity of heat, can be defined for the turbulent

heat transfer rate. The eddy diffusivity of heat is assumed proportional to the

Reynolds stress

(2-8)

where Pr t is the turbulent Prandtl number. We cannot expect an exact analogy

between heat transfer and momentum transfer in turbulent flow. However, Pr t is

usually of the order of unity and in the absence of better information, can be

considered nearly constant. In this work, the turbulent Prandtl number is assumed

constant at 0.9. Substituting equations (2-7) and (2-8) into equations (2-2) and (2-3),

wehave

3U ,3U dP 4--_ #eff --pu-&--+pv_ = (2-9)

_H _ 3 I.teff
pv--[+pv + (2-1o)

where Peff = P + Pt (2-11)

Preff = l.t t #t

Pr Prt

(2-12)
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are the effective viscosity and effective Prandtl number respectively. Equations (2-9)

and (2-10) are the governing equations for both laminar and turbulent flows in the

absence of body forces and heat sources. When the flow is laminar and the Reynolds

stress is zero, the equations become the steady laminar boundary layer equations. The

correct prediction of eddy viscosity is determined by the appropriate turbulence model.

2.2 Two-Scale Turbulence Model

The turbulence model proposed herein employs two independently calculated

scales with which to characterize different turbulent interactions. The concept is based

on the split-spectrum methodology, introduced by Schiestel in his Ph.D. work and

further developed by Hanjalic et al. (1980, 1983) and Schiestel (1983a, 1983b, 1987).

In the derivation of the model, first, the dynamic equation of the two-point velocity

correlation equation is Fourier transformed. Then partial turbulent stresses are derived

by the partial integration over each slice (or shell) of the three-dimensional energy

spectrum. By tensor contraction, we obtain the partial turbulent kinetic energy

equation. The transport equation of energy flux through the energy spectrum can be

obtained from straightforward algebra. The derivation of these equations can be found

in detail in Appendix A. The resulting equations of the model are

U _ + V -_- = akp } ay J
(2-13)

U Okt " Okt Oil Vt IOkt]
(2-14)



25

J-@-J
_p

(2-15)

ay aE,J _ J

i ,,3/2 e2

+Ctlftl kp

2

-- -G 2St2e.___
kt

(2-16)

In these equations, kp and k t are the partial turbulent kinetic energy in the production

zone and transfer zone respectively; ep and C t are the net energy fluxes transferred

out of each zone. In each equation, there are convection, diffusion, production and

destruction terms. Damping functions f are added as appropriate to accommodate

near-wall viscous behavior. The first term on the fight-hand-side in each equation is

diffusion and is approximated by the effective viscosity. The contribution of turbulent

diffusion for each quantity is related to the eddy viscosity through the coefficient (7.

This is not true in general, but in this work, the coefficient o's are assumed to be

constants. The production of the turbulent kinetic energy Pk is given by

(au) 2
(2-17)

The eddy viscosity model is generally written as v t = Ctzo_, where v and g are the

turbulent characteristic velocity and length scales, respectively. In the proposed
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model, (kp+kt) U2 is used as the characteristic velocity, and the length scale is

characterized by that in the production region, i.e. £ = k3/2/ep. In other words, the

turbulent energy is produced by the large eddies only. Hence, the eddy viscosity is

written as

V t =Cl_flg(kp+kt) 1/2k3/2p

Ep

(2-18)

Here, C/a is a constant and set to be 0. 09 and fta is the damping function incorporating

the near wall behavior. In this formulation, the single-scale model will be recovered if

the transfer zone turbulent kinetic energy is set to zero.

There are eight model constants, Cpl, Cp2, Ctl, Ct2, a_, a_, aq_ and act,

and five damping functions, f/a, fpl, fp2, ftl and ft2, in the transport equations.

These eight constants, compared to four in the single-scale k-e model, are determined

from the analysis of grid-generated isotropic turbulence, homogeneous shear flow,

near wall equilibrium flow, and adjusted by numerical optimization. The calibration of

model constants is detailed in Appendix B and the results are as follows:

cs,l cve oa

1.55 1.90 1.0 1.0 1.3 1.3

(7-1)2(Cp2-1)
with Ctl - and Ct2 =Ctl_g +Cp2 (2-19a, b)
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where rs - 0.3 and y = 1.625. It should be noted that the coefficients Ct I and Ct 2 are

not constants for all cases but depend on the turbulent kinetic energy ratio rg

(= kt/kp) in the external flow of the boundary layer. In this way, the turbulence

model is automatically tuned to the fi'ee-stream energy spectrum. The damping

functions are used to provide the proper influence of the wall especially in the viscous

sublayer. These functions will be unity if there is no wall in the flow or far away from

the wall. They are characterized by the turbulent Reynolds number and will be

discussed in the next section.

2.3 The Damping Functions

Momentum transfer in the boundary layer is basically controlled by turbulent

diffusion in the presence of a wall. The wall suppresses the mixing effect of turbulent

flow and generates the kinematic blocking effect especially in the normal turbulent

fluctuation velocity. The turbulence model must be modified, by damping the eddy

viscosity, to include this near-wall behavior especially in the viscous sublayer. It

follows that the damping functions in each equation must have the proper variation

with y to have an asymptotically consistent solution.

The variation of the instantaneous velocity components (u', v' and w') near a

wall can be expressed by the Taylor series

u" = aly + a2Y 2 +... (2-20a)

v" = b2Y 2 +... (2-20b)
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w'=clY+C2y 2+... (2-20c)

where the coefficients a i, b_ and c_ are functions of time, but their time averages are

zero. This formulation leads to

k = kp +kt = `4ye+By3+... (2-21)

e = F.p + E t = 2(.4 + 2By+...) (2-22)

-u'v'= Vt -_ :-_lb_y 3 -(alb 3 +_2b_ )y4-... (2-23)

where A=lla2+c21 and B=ala2+clc 2 (2-24a, b)

Although in the log-law region where the energy production is approximately equal to

the net dissipation and the major contribution of turbulent kinetic energy is from large

eddies (i.e. production region), there is no reason to assume that in the near-wall

region the asymptotic behavior of k t has a different order of that of kp. Similarly,

equations (2-16) and (2-17) suggest that ep and e t are of the same order.

kp = Apy 2 + Bpy 3 +... k t = Aty 2 + BtY 3 +... (2-25a,b)

ep = 2(.4p + 2Bpy+...) e t = 2(.4t + 2Bty+...) (2-25c, d)

where ,4 = Ap +/1 t and B = Bp + B t. Since o3U/o3), = 0(1), and the near-wall

asymptotic behavior of eddy viscosity v t is O(y 3), equation (2-21) tells us that the



29

dampingfunction fta has to be 00,-1). In the present study of the modeling of f#,

we first consider two different length scales, one is the length scale of energy

containing eddies Lp, the other is the Kolmogorov microscale r/. These length scales

are defined as

Lp = C L P--P----o, _ and rl =
ep

(2-26a, b)

These length scales Lp and r/can be related as

k 2
L__p_p

¢_ _R_,/4 where R t = (2-27a, b)

rI -- ve

Here, R3t/4 serves as a link between two length scales and behaves as O(y 3) in the

near-wall region. Thus, the proposed damping function fta is as

[1-exp(-R//4) ][

fla =[l_exp(_A#Rt)J[l-exp(-y+/Bla)] 2

(2-28)

where Art and B/a are constants (0.25 and 26 respectively) and y+ is the wall

coordinate defined as yU_/v. When away from the wall, the eddy viscosity is

determined by the large eddies; but very close to the wall, the eddy viscosity is

dominant by small eddies. It earl also be seen that Lp = 00, 3) and 7"1= 0(1) in the

near-wall region, thus the damping function f/a has the proper asymptotic behavior

near a wall fl_ o_ y-1.
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The function fp2 is introduced primarily to incorporate the different decay

laws of the grid-generated turbulence in the ep-equation (see Appendix B). It is

written as

(2-29)

where Ap =0.3 and Bp = 6. In the near-wall region where v>> v t and the

convection terms are negligibly small, the ep-equation becomes

_2Ep PkEp

V-_ +Cplf pl kp

e2p o
(2-30)

In considering the behavior of near-wall turbulence where the production is much less

than the destruction, the equation (2-30) tells that the damping function fp2 must vary

as in O(y 2) and fpl can be in order lower than O(y2). Thus the following function

is proposed

:,,-_[,_ (2-31)

where the constant _,p = 8 is decided by numerical experiment and Ry defined as

,¢rky/v. Near the wall, Ry = O(y 2), the equation (2-31) varies fp2 = O(Y 2) and

satisfy the limiting behavior. In order to simplify the model, the damping function fpl

is defined as unity. Similarly, approaching the wall, the e t-equation becomes
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P G2f 2 =oo3y2 I'Ctlftl kp
(2-32)

which indicates that both damping functions ftl and ft2 are O(y2). In the present

model, in order to have the proper balance between production and destruction in

transfer region, the damping functions ftl and ft2 are defined as

ftl = ft2 = [1- Ap exp(- R:/B2p)][1-exp(-Ry/_,t )] (2-33)

The numerical value A t = 10 is decided on the basis of numerical experiment, but this

number is not sensitive to the calculation.

2.4 Numerical Solution Procedure

Because the purpose of this research is primarily to developing the turbulence

model and test its application to the transitional boundary layer, any numerical method

is suitable as long as it can solve the parabolic type equations. The Patankar-Spalding

method is used throughout this work simply because the author is familiar with this

method. A detailed description of this algorithm can be found in Spalding (1977) and

Patankar (1980, 1988); only a summary will be given here.

The algorithm of Patankar-Spalding is based on solving the governing equation

in x-t0 coordinates, instead of x-y coordinate. Here, a_ is the normalized stream

function coordinate W alter a yon Mises transformation. The transformation eliminates
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the V velocity from the continuity and momentum equations and reduces the number

of governing equations by one. The coordinate r.0 is defined by

to - _g- _I, with A_g = _E - _/ (2-34)
A_

where the subscripts I and E denote the internal and external surfaces of the

computational domain. The use of the to coordinate, always between zero and unity,

allows the grid system to follow the growth of the boundary layer, and therefore

retains the same grid system irrespective of the actual boundary-layer thickness (see

Figure 2-1). As Long as _t I and _tE are varied appropriately with x, the x-rz

coordinate could provide the same accuracy along the space-marching computation.

With the help of equation (2-34), all the transport equations can be written in a general

form, such as

(2-35)

where a = I d_t 1 b= 1 d (A_) (2-36a,b)
Alp' dr ' A_t dr

aU S_
c = _--;-_zTx-_F_, d = (2-36c,d)

'" '__'t_) pU

and _ = ( fYpUdy] (2-36e)
x=constant
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where S¢ and F O are the net source and diffusion coefficient in each equation. The

general variable ¢ can stand for the mean velocity U, turbulent kinetic energy kp, kt,

net turbulent energy transfer rate ep, et, or total enthalpy H. The source terms in

each equation are lineadzed, such as

S¢ = Sc - S pdp (2-37)

The negative sign before Sp is necessary to ensure no negative value of t_. Once the

variable 0 is defined, the corresponding S o and Fo follow. One consequence of the

definition of the stream function is that the mass flow rates per unit area crossing the I

and E surfaces, namely m_' and m_, are related to the stream functions V1 and VE by

dVl - .rh"1" and dVE = -rh k (2-38a, b)
dx dx

For a boundary layer without transpiration at the wall, the' = 0. The entrainment rate

at the edge m_ is approximated by the equation (2-35) when the cross-stream gradient

is close to the free-stream boundary. The entrainmem calculation is based on the

velocity profile and is controlled as part of the computation.

Figure 2-2(a) shows the region between the upstream location x U and the next

Ax-downstream location x D. The region also bounded by I and E surfaces, i.e. the

wall and the external free stream. Between them, the domain is composed of control

volumes, each surrounding a grid point. In this work, a linearly-increasing non-

uniform grid system (150 control volumes with 3% increase in to direction) is used

to enhance the resolution in the near-wall region. It is very reasonable because in the
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outer region of the boundary layer all gradient properties are small in approaching the

external conditions and a course grid is sufficient to describe the flow there.

The finite difference equation is derived by integrating the differential equation

over a control volume. For ease of integration, equation (2-35) is further rewritten as

A_t Ox d_ \ d_j
(2-39)

In deriving the difference equation, it is assumed that the variation of ¢ is

piecewise-linear between the grid points. This assumption simplifies the derivation

and keeps the physical essence of the solutions. The marching procedure is to obtain

the unknown values of ¢ at x D by using known values at x U . In each marching step,

the equations are decoupled from one another. For example, the solving sequence is

solving kp first then k t, ep, e t and U, thus the "old" upstream ep value is used in the

kp-equation, but the updated kp value will be used in the ep-equation. This

procedure requires that the marching step be kept small in order to reduce the

accumulation of errors. In this work, the step size Ax =0.25S 0 (_0 is the momentum

thickness) was found adequate to have step-size-independent solutions.

In dealing with the nonlinear convection-diffusion terms, the "hybrid-scheme"

technique is used, thus yielding an implicit set of coupled algebraic equations for a

typical control volume (see Figure 2-2('0)). The detailed derivation of this difference

equation is explained in Patankar (1988). The final expression are as follows:

apep = aNON +as¢s +b (2--40)
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where b = ScAx(Ay)p + apuq_PU (2-41a)

,,pv=(A_,)v(ao,)p (2-41b)

[ '1aN = kx" max O.,-thn', Fkyn -}th n"
(2-41 c)

a s =Ax'-max[0., rhs' Fs+lrhs']Ays 2 J (2-41d)

and ap = a N +a S +apu - SeAx(Ay)p (2-41 e)

hence, the mass flow through four surfaces of the control volume is conserved to

satisfy continuity.

(A_,)v(Ao_)p =(A_,)z,(ao_)p+,/,,,"_-,/,;'_ (2-42)

Finally, with the specified boundary conditions, the discretized equation (2-42) can be

easily solved by a Tri-Diagonal-Matrix Algorithm (TDMA) to have the solution q in

each control volume.
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2.5 Initial Profiles and Boundary Conditions

2.5.1 Initial Profiles

Since the boundary layer equations are not valid at the leading edge of a flat

plate (x = 0), the initial profiles of all dependent variables must be specified at some

distance downstream of the leading edge (x = xi). In addition, boundary conditions

must be provided to describe the wall and free stream conditions as the computation

marches forward.

Mean Velocity:

The no-slip condition requires the velocity at the wall to be zero. The velocity

at the free stream is specified as a function of x, U = U e (x). In this work, the external

mean velocity is set constant to describe the zero-pressure fiat plate boundary layer

flow. The starting location is far upstream of boundary layer transition, thus the flow

is a laminar boundary layer. The Blasius profile is used to represent the variation of U

withy. The profile is the numerical solution of the Blasius equation

2/" + ff"=O (2-43)

with boundary conditions f = f'= 0 at 71= 0 and f" = 1 as rl = _. Here, the prime

denotes the derivative with respect to the Blasius similarity variable r/= Yx[-_e/vx.

Total Enthalpy:
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The total enthalpy in the free stream is assumed to remain constant for all the

cases considered. At the wall, the temperature or heat flux is prescribed. For the case

of a specified wall temperature, the initial profiles are derived by similarity

transformation using the similarity variable r/ and stream function _. The non-

dimensional temperature is expressed as

tT" +l pr fO'= -2 Pr f "2 (2-44)
2

where Pr is the molecular Prandtl number, and 0 is the non-dimensional temperature,

defined by

0= T-T e (2-45)

The total enthalpy is computed through equation (2-4) and solution of (2-44) with

0 = 0 w at wall and 0 = 0 at free stream.

Partial Turbulent Kinetic Energy:

Exactly at the wall, there is no fluctuation of turbulent velocities; both values

of the partial turbulent kinetic energy must be zero. At the free stream, the partial

kinetic energies are specified as

kp =Sgke, k, =(1-Sg)k e (2-46a,b)
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I[

= 1/_ is a spectrum shape factor which indicates how muchwhere Sg l+kt/kp) e

energy is contained in the production region. In order to compare with the

experimental data, it is assumed that the free stream turbulence is isotropic, so that the

total kinetic energy is given as

k e = 1.5(u') 2 = 1.5(Tu)2 U2e (2-47)

Two different initial profiles of total turbulent kinetic energy were proposed

respectively by Rodi (1987) and Reshotko (1990). Both considered the effects of the

elevated flee-stream turbulence; they are

Rodi: k = f,2 (2..48)
ke

and shown in Figure 2-3. Rodi's profile simply assumes that the amplitude of turbulent

fluctuations inside the boundary layer is linear with respect to the local mean velocity.

However, the Reshotko's profile presents an overshoot characteristic in the laminar

boundary layer which is reflected in the experimental evidence of Klebanoff (1964, see

Reshotko 1994) and Dyban ¢t al. (1976) by measuring the streamwise fluctuating

component. In Figure 2-3, the peak of the profile is at r/= 3.2, and is much less than

the experimental data. This under-prediction is due to the isotropic assumption and

the use of the two dimensional Blasius profile in estimating the fluctuation component
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u'. A more proper treatment of the "Klebanoff mode" would require three-

dimensionality and anisotropy. A derivation of Reshotko's profile can be found in

Appendix C.

After defining the partition of the free-stream energy spectrum by Sg, we have

another difficulty in partitioning the kinetic energy inside the boundary layer.

Although Klebanoff indicated that the overshoot structure is largely from low

frequency fluctuations, the fraction of the turbulent kinetic energy k inside the

boundary layer that comes from the low frequency part (i.e. in production region kp)

is still unknown. Here, we assume that the initial energy distribution across the

boundary layer also has the same ratio Sg. That is

kp = Sgk and k t =(1-Sg)k (2-50a, b)

Later calculation shows that the friction coefficient Cf is not sensitive to the initial

turbulent kinetic energy profile (whether Rodi's or Reshotko's profile) but the

transition location will be changed due to how much energy is initially contained in the

large eddies.

Turbulent Kinetic Energy Transfer Rate:

The initial profile of the dissipation is introduced by Rodi and Scheuerer (1985)

in assuming local equilibrium

C--ep+ Et =al(k p +kt)OU
Oy

(2-51)
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where al, the structure parameter (defined as -'_v/k), depends on the free-stream

turbulence intensity. A limit must be imposed on e which prevents the turbulent length

scale inside the boundary layer from exceeding its free-stream value. Thus, we define

the initial profiles as the following

OU

Ep =alkp-- _ for C,p >-(8P)e (2-52a)

et =alkt °3--_U for Et >(C,t)e (2-5Zb)
o3'

2.5.2 Boundary Conditions

The boundary conditions at the wall are U = 0, V = 0, kp = 0 and k t = 0 due

to the no slip condition. From the near-wall asymptotic analysis, the boundary

conditions for ep and e t are suggested as

and e t = 2 (2-53a, b)

At the edge of the boundary layer, the velocity is given by its free-stream value and all

the turbulent quantities are there determined from solving equations (2-12) to (2-16) in

the isotropic grid-generated turbulent flow (see Appendix B)
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0kp_
U e oax ep (2-54)

Ue °3kt (2-55)
---_-- --E t

(2-56)

: _3/2 2

_ o3Et=Ctlftl[___ I E__ppUe-'-_ \ PJ

2

__Ct2ft2 g__.kt
kt

(2-57)

The initial values of kp, kt, f.p and e t in free-stream are given by experimental data

and the specified Sg.
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Figure 2-3 Initial profiles of turbulent kinetic energy.



CHAPTER THREE

NUMERICAL SIMULATION OF TRANSITION

3.1 Evaluation of the Two-Scale Turbulence Model

This section presents a series of computational tests which evaluate the effects

of the starting location and initial profiles for numerical computation. These are the

factors which must be known before using the turbulence model in computation. The

importance of this evaluation to the transition prediction has been addressed by Rodi

and Scheuerer (1985), Schmidt (1985) and Stephens and Crawford (1990). After this

evaluation, the proper starting location and initial profiles can be used in computation

with known influence on transition prediction. From the results we can also

distinguish the sensitivities to these two factors from that of the turbulence model.

3.1.1 Sensitivity of the Starting Location

The sensitivity of starting location was evaluated by maintaining the following

conditions in computation

• Tu = 2.3%

• The mean velocity is the Blasius solution

• The turbulent kinetic energy is the Reshotko's profile

• The structure coefficient of dissipation rate a 1 is 0. 3

44
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• The spectrum shape parameter Sg is maintained at 0.8

The initial profiles of these tests were generated by equations (2-49) to (2-52). In

these tests, the starting location was placed at length Reynolds numbers of 101, 102,

103 and 104. Because the local skin-friction coefficient Cf is an important measure of

transitional behavior, it was used as the major parameter in evaluation. Figure 3-1

plots the computed local friction coefficient with starting Reynolds number. Also

shown are the analytical solutions for the laminar boundary layer and Prandtl's

correlation for the turbulent boundary layer

0.664

laminar: Cf = _ (3-1)

O. 058
turbulent- Cf = 0.2 (3-2)

Rex

It appears that the friction coefficient is enhanced by the elevated free-stream

turbulence level. Figure 3-1 also shows that the computed fi'iction coefficient is not

sensitive to starting location up to Re x = 104. Thus the starting location is set at

Re x = 102 in any following computation.

3.1.2 Sensitivity to the Initial prot'des

The initial profiles examined here are the Rodi profile and Reshotko's profile

for turbulent kinetic energy and Rodi's profile for energy dissipation rate. For this set

of numerical tests, the following conditions are maintained:
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• Tu = 2.3%

• The starting location is at Re x = 100

• The mean velocity is the Blasius solution

• The spectrum shape parameter Sg is kept at 0.8

First, for the two different initial kinetic energy profiles, figure 3-2 shows that the

prediction is not sensitive to the differences between these profiles. All subsequent

computations use the Reshotko's profile. Although only the Rodi profile is used for

initial turbulent energy dissipation rate, it is necessary to examine the sensitivity to the

structure coefficient a 1 in equation (2-51). Figure 3-3 shows that the influence is very

limited in transitionlng boundary layer prediction. With increase in the coefficient al,

that is more dissipation inside the boundary layer at the starting location, the transition

has a slightly delayed onset. In the following calculation, the structure coefficient a 1 is

set at 0.3. From figures 3-1 to 3-3, we may conclude that the initiating computation

has very little effect in transition prediction.

3.2 Comparison with the Experimental Data

Direct comparison with experimental data is necessary in the development of

the turbulence model so that the capabilities and failures of the model can be assessed.

In this section, calculations will be compared with five different sets of experimental

data for the flow over a flat plate (zero pressure gradient). All of these experiments

are subjected to the influence of elevated free-stream turbulence levels. The
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turbulence intensity considered at the leading edge ranges from 1% to 9%. In some

experiments, the transition is given in terms of heat transfer by constant heat flux or

constant temperature at the flat plate, thus the local Stanton number is measured. The

Stanton number is defined as

Since the experimental data sets used here are from different facilities and since

the wind tunnels are of different design with different instrumentation and ways of

generating free-stream turbulence, the results obtained in the different experiments are

not fully consistent. The experimental data could also be affected by a lot of factors,

such as the area ratio of the contraction section, location of grid system, the measuring

technique, flat plate leading edge radius, carefulness of the observer etc. For example,

even though Sohn and Reshotko (1991) and Blair and Werle (1980) have similar

facilities and similar grid designs, the transition locations are different. Therefore,

agreement with all of the experimental data is not expected.

3.2.1 The Data of Blair and Werle

Blair and Wede (1980) conducted their experiments in a low speed wind tunnel

with air at ambient conditions. The mean velocity in the test section was kept at 30.3

m/s. Various turbulence intensities (up to 6%) were generated by inserting square-

array biplane grids constructed from rectangular bars at the entrance of a two-

dimensional 2.8.'1 contraction. At the leading edge, a bleed system provided spanwise

uniformity and prevented local separation and premature transition. The turbulent
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quantities were measured by hot wire anemometry for all three components. The flat

plate was heated by a uniform heat flux of 850 W/m 2 following a 42. 9 mm unheated

starting length. The turbulence in the test section was nearly homogeneous and

isotropic and approximately followed the decay law

Tu e = 0.78( x +-_32 ) -5/7
(3-4)

where x is in cm; and b=0.48, 1.27 and 3.81 for grids 1, 2 and 3 respectively. The test

results of grid 4 will not be considered here because all the recorded data are already

fully turbulent and so there is no transition information. Table 3-1 gives the values of

turbulent kinetic energy k, dissipation rate e and turbulent intensity Tu at leading edge

that are used in the computation.

Parameter Grid 1 Grid 2 Grid 3

Tu e at x--0 1.12% 2.33% 5.75%

k e (m2/s 2) at x--0 0.175 O.757 4.60

e e (m2/s 3) at x=0 2.75 19.5 150

Table 3-1 Free-stream turbulence conditions in computing the flows of Blair

and Werle (1980).
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Figure 3-4 shows the comparison between calculated Stanton numbers and

experimental data. The transition is predicted late for grid 1 but early for grid 3. It

should be noted that Blair and Werle reported that the transition is shined upstream by

wall effects in the flow without a grid. It is possible that the grid 1 case is also slightly

affected in the same way. Also included in figure 3-4 are (i) the laminar boundary

layer analytical solution of Reshotko (1995) for zero pressure gradient with uniform

wall heat flux

St = 0.453 Pr -2/3 Rex-l�2[ 1-(x 0/x)] -1/3 (3-5)

where x o is the unheated starting length and (ii) a correlation suggested by Kays and

Crawford (1980) for fully turbulent boundary layer flow

St = O.O3 Pr -0.4 Rex-°.2[1-( XO/X)0"9 ]-1/9 (3-6)

It is shown in the figure that the heat transfer is enhanced by free-stream turbulence

level in both experiments and computations.

In figure 3-5, the effect of free-stream energy spectrum on the onset of

transition is examined. The spectrum depends on the wind tunnel and on the grid used

in generating the flee-stream turbulence. If the production of turbulent kinetic energy

is coming from most of the spectrum (Sg is large), the transition location is moved

upstream. In other words, if there is more energy contained in the large eddies, the

energy could penetrate more effectively into the boundary layer. Thus the onset of
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transitionis earlier. However, there are no experimental data available to confirm this

prediction.

3.2.2 The Data of Rued and Wittig

These experiments were carded out in a wind tunnel with various fi'ee-stream

turbulence intensities (Tu= 1.6 _ 11 percent), zero and favorable pressure gradient

and various cooling intensities (Tw/T e =1.0 _ 0.53) (see Rued, 1985 and Rued and

Wittig, 1985). The turbulence was generated by installing a calibrated grid located

170 mm upstream of the plate's leading edge. The air is heated before it enters the test

section whereas the flat plate is cooled after a 15 mm uncooled leading edge region.

In contrast to the experiments of Blair and Werle, the wall temperature in the cooled

region is kept nearly constant (Tw = 305 K) under all conditions. The turbulence

quantities are measured by Laser-Doppler-Anemometry and the turbulent skin friction

is determined by a Preston-tube technique. Only two components, u "2 and v "2 , of

fluctuating velocities are measured at different locations and the ratio between them is

from 0. 7 to 0.9 in the zero pressure gradient condition. Therefore, the free-stream is

not exactly isotropic. Since the third component w '2 was not measured, we assumed

that the free-stream is isotropic and w '2 = v "2 to set the level ofk in the computations.

Here, we consider the zero-pressure-gradient, waU-cooling case only. In this

case, the free-stream velocity is kept constant at Ue = 47 m/s and the turbulence

intensities are varied from I. 6 to 8. 7 percent at the leading edge. The free-stream flow

conditions at the start of the test section are summarized in Table 3-2.
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Parameter No Grid Grid 1 Grid 2 Grid 3 Grid 4

Tu e at x=O 1.71% 2.80% 4.65% 7.40% 10.8%

ke (m2/s 2) at x--0

e e (m2/s 3) at x=0

0.969

62.3

2.60

480

Z16 18.14 38.6

1600 9530 24000

Table 3-2 Free-stream turbulence conditions in computing the flows of Rued

and Wittig (1985).

Figure 3-6 shows the comparison between experimental Stanton numbers and

computation for flow without grid (grid 0) and with grids 1, 2 and 3. The predicted

onset of transition is good for grids 0, 1 and 2 but too far upstream for grid 3. In

general, the transition length is short for all cases.

3.2.3 The Data of Savill

The experimental data are from the test cases T3A and T3B of the European

Special Interest Group on transition presented in the first ERCOFTAC (European

Research Community On Flow Turbulence And Combustion) workshop (Savill, 1990).

These two tests were performed on a flat plate at free-stream velocities U o of 5.2 m/s

and 9.6 m/s with turbulence intensities at the leading edge of 2.8% and 5. 7%

respectively. The objective of these experiments is to provide data for the examination

of various turbulence models in the prediction of transition for zero pressure gradient

boundary layers.
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Thetestswere conductedin a low speed wind tunnel with air. As a result of

careful design, the test section free-stream turbulence intensity is within 0.2% over the

operating velocity range of 0 to 25 m/s, and the air temperature is controlled within

0.1 degree C during operation. Hot wire anemometry was extensively used in the

turbulence measurements. Free-stream turbulence is generated by parallel arrays of

round rods and square bars in T3A and T3B respectively. The grid is installed fight

after the 2.5:1 contraction section and 610 mm ahead of the leading edge of the flat

plate. The leading edge has a 0. 75 mm radius with a 5 degree chamfer on the other

side of the test surface. Earlier studies (Roach, 1987) reveal that the turbulence

generated by such grids is indeed isotropic and obeys the following decay law

u._._[_"= C(x +610) -5/7
UO

(3 -7)

where C=2.74 for the T3A grid; C=5.60 for the T3B grid; and x is the distance

from leading edge in mm. Figures 3-7 and 3-8 show the friction coefficient and shape

factor, respectively, compared with the experimental data. Good agreement is

obtained for both cases except that the transition length of T3A is short. The model

also produces good prediction of the mean velocity profiles development, as illustrated

by figures 3-9 and 3-10 for T3A and T3B respectively.

In order to further characterize the transition process, we integrate the

turbulent kinetic energy equation (equation 2-13 plus 2-14) across the boundary layer

with respect to y from the wall to the free-stream Thus, we have



53

(3-s)

where _ = SO Pkdy

Figure 3-11 shows that the ratio of Pk/-_ increases from the leading edge of the flat

plate. More and more energy is produced inside the boundary layer and the rate of

production also increase until the ratio reaches a maximum. Finally, the ratio

decreases and the boundary layer reaches the equilibrium condition where the flow is

fully turbulent. From this figure, we see that the present model simulates the

transitional boundary layer flow development as a gradual process that begins far-

upstream of the increase of skin friction. The velocity profiles reflecting this process

are shown in Figure 3-12. The logarithmic layer is gradually generated during the

transition.

Figures 3-13 and 3-14 plot the partial turbulent kinetic energy k + (= kp/U_)
p

and kt+ (= kt/U2)as a function of the wall unit coordinate y+ in the T3A case with

Sg = 0.9. The turbulent energy is penetrating the boundary layer by diffusion and

convection from the free-stream During the transition process, the turbulent energy

level is rapidly elevated for the whole boundary layer. It should be noted that the

transfer zone turbulent kinetic energy k t is two orders-of-magnitude lower than that

in the production zone k + However, close to the free-stream, the role of kt+p-

becomes more and more important until it behaves as the spectrum parameter Sg in

free-stream. In other words, the production region of the energy spectrum is more

effective when approaching the wall. Note that although the initial profile has little

influence, the Reshotko profile appears at Re x =1×105. Figures 3-15 and 3-16
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represent the net energy transfer function Ep e t (= of the

+ is small because thetransitional boundary layer. As expected, the quantity of e t

energy is just transferred through this transfer region. Figure 3-17 shows that the

Reynolds stress gradually increases throuth transition until it reaches equilibrium.

For high flee-stream turbulence intensity, such as the T3B case (figure 3-18),

the ratio Pk/_ is very rapidly increasing, thus the transition location is much earlier.

However, the flow does not reach equilibrium boundary layer until well after

transition. This is because the dissipation rate is also high in this case.

3.2.4 The Data of Kim and Simon

Kim and Simon (1991a, b) have studied the transitional boundary layer flow

over flat plate and concave surfaces and tabulated the results for any further study.

Only the flat plat cases are considered here. The experiment was performed in a low-

speed, open-return wind tunnel with high contraction (area ratio 10.6:1) two-

dimensional (aspect ratio 6:1) nozzle installed right before the test section. Up to 8%

fi'ee-stream turbulence intensity is generated by using an insert section after the

contraction nozzle. They use hot-wire anemometry with single-, double- and triple-

wires probes in measuring various turbulence quantities. Stanton numbers were

measured using thermocouples embedded in the wall and the intermittencies were

obtained by conditional sampling technique. They investigated three different

turbulent intensities, 0.32%, 1.5% and 8.3%, in flat plate boundary layer flow; the

latter two are presented in Table 3-3 for computation.
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Parameter Case 2 Case 3

Mean velocity (m/s)

Tu e atx--O

k e (m2/s 2) at x=O

e e (m2/s 3) at x=O

16.7

1.5%

0.0941

0.10

9.2

8.91%

1.008

11.86

Table 3-3 Free-stream turbulence conditions in computing the flows of Kim

and Simon (1991).

Figures 3-19 and 3-20 show the skin-friction coefficient and shape factor of

case 2, as a function of Reynolds number respectively. The present model predicts the

transition is very abrupt at the onset, but it behaves well thereafter. In figure 3-21 the

velocities fi-om calculation (figure 3-21(a)) are compared with the experimental data

(figure 3-21(b)) in wall coordinates. The agreement is quiet good. However, the

computed Reynolds stresses are generally lower than the experimental data as shown

in figure 3-22.

Kim and Simon applied 190 W/m 2 heat flux at the wall in the high turbulence

intensity ease. For this case (figures 3-23 and 3-24), the computed skin-friction

coefficient and shape factor compare favorably with experiment. Transition occurs

upstream of the experimental data taken. Figure 3-25 shows the Stanton number as a

function of Reynolds number. In contrast to the experimental data, the calculated heat

transfer is augmented slightly over the standard turbulent correlation (equation 3-6).
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3.2.5 The Data of $ohn and Reshotko

The experiment was conducted in a low speed wind tunnel at the NASA Lewis

Research Center (Sohn and Reshotko, 1991). The wind tunnel is similar in design to

that of Blair et al. (1981) but with a higher contraction nozzle (area ratio 3.6:1) and a

smaller test area cross-section. The grid system, similar in design to that of Blair et al.

(1981), is installed upstream of the contraction. A bleed system is also used at the

plate leading edge to prevent local separation. The mean velocity inside the test

section is kept constant (30.5 m/s) and the turbulent intensities are varied from 1% to

7% at the leading edge. A constant heat flux (350 W/m 2) is applied after the 1.375

inch unheated length. This wind tunnel was used by Suder et al. (1988) who claimed

that the test section turbulence was isotropic. Sohn and Reshotko used the same grids

as Suder et al. but obtained slightly higher turbulence intensities for each grid. Since

only the stream wise free-stream turbulence quantities were measured, it is assumed

that the flow is homogeneous and isotropic in computation. The free-stream flow

conditions at the leading edge for each grid are summarized in Table 3-4.

Parameter Grid 1 Grid 2 Grid 3

Tu e at x-_ 1.12% 2.85% 6.14%

k e (m2/s 2) at x--0 0.175 1.137 5.253

e e (m2/s 3) at x--0 0. 647 39. 8 290. 7

Table 3-4 Free-stream turbulence conditions in computing the flows of Sohn

and Reshotko (1991).
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Similarto Blair's results, the measured flow for grid 4 is fully turbulent so that

we consider grids 1, 2 and 3 only. Figure 3-26 documents the decay of free-stream

turbulence intensities for each of the grids. Note that the agreement between the

computation and experimental results verifies the simplified power-law equation for

grid turbulence flow. Figure 3-27 shows that the calculated onset of transition

calculation is delayed for grid 1 but very early for grid 3. These computational results

are similar to those calculated for the Blair and Werle data. The computed Stanton

number variations are shown in figure 3-28. Since the present model assumes the

momentum equation to be uncoupled from the energy equation, it should not show

any lag (or lead) of the heat transfer quantities. Recently, Madavan and Rai (1995)

simulated the experiment by a Direct Numerical Simulation (DNS) technique and their

results show that the transition in skin friction leads the transition in heat transfer.

Figure 3-29 shows the comparison of the Reynolds analogy factor, 2 St�C f, between

experimental data, DNS result and the present model prediction. The reference

laminar and turbulent curves are obtained from the combination of equations (3-1), (3-

5) and (3-2), (3-6) respectively. The model predicts the early transiton but agrees well

in the fully turbulent flow.

Figures 3-30 and 3-31 show the development of mean velocity and

temperature profiles respectively. Both profile sets change from the laminar profiles

until they reach the log law. In figure 3-30, two reference curves represent the viscous

sublayer U + =y+ and the logarithmic layer U + =2.51ny + +5. As obtained in the

experiment, a small wake region is clearly seen at Re x =5×105, however, it is

diminished in DNS result (see figure 8 of Madavan and Rai, 1995). Also shown in

figure 3-31 are the laminar solution T + = Pry + and the turbulent correlation:
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T+=13.2Pr+ Prt lnIY+ 1

0.41 _13.2j
(3-1o)

where T + is defined as (Tw -T)/T z and Tz is the friction temperature, defined as

qw/ pV .

Figure 3-32 shows the normal mean velocity profiles at various stream wise

locations. Since the transition is so abrupt, the normal mean velocity becomes

negative not only in near-wall region but also in the outer layer by a very small amount

at Re x = 2.2 xlO s. Also noted is that the mean normal velocity is of the same order-

of-magnitude as the DNS results (Rai, 1994). However, the experimental data have

higher values, are felt to be in error. This is because the experimental values of V at

the edge of the boundary layer are much larger than the experimental values of

dB*/dx.

Figures 3-33(a) and 3-33(b) plot the turbulent intensity evolution of the

transitional boundary layer in wall coordinate y+and outer variable yp$ respectively.

Here, the turbulent intensity < u' >/U e is defined as

<u'>_ 1
(3-11)

Ue Ve

Both figures shows that the peak value increases in the stream wise direction and

reaches a maximum in the transition region before reaching and maintaining an

equilibrium in the fully turbulent flow. The maximum is moving forward the wall as

Reynolds number increases. The variable < u'> is not the real fluctuation quantity



59

since the flow inside the boundary layer is not isotropic. It is less than the actual

stream wise turbulence quantity u' as shown in figure 3-34(a) and (b), because u' is

always the largest component experimentally. However, the general trend of

< u'>/U e is similar to the trend of u'/U e . Figure 3-35 shows the turbulent kinetic

energy in filly turbulent flow. In the near wall region, the model does not have the

high peak value as the DNS data but in the same y/¢5" location. The difference in

outer region could be due to the errors in DNS results because all three components of

the turbulent intensities in DNS data are still in obviously decay at y/t_ = 1.

3.3 Summary

In this chapter, five different sources of experimental data have been used to

evaluate the transition prediction capability of the multiple-scale turbulence model.

The prediction is insensitive to the starting computation location and the initial profiles

of turbulent kinetic energy k and dissipation rate e. Figure 3-36 shows the comparison

of the predictions with the correlation suggested by Abu-Ghannam and Shaw (1980).

The correlations for the start and end of transition are:

Re0, s = 163 + exp(6.91-100 Tu) (3-12)

Reo, E = 2.667Re0, S (3-13)

Also shown in the figure are the experimental data in their report from various

facilities. The multiple-scale k-e predictions are reasonably good for the start of
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transition but are too early in general for the end of transition. It should be noted in

the experimental data that the Reynolds number Re 0 has a very wide range at the

same ffeestream turbulence intensity especially for the end of transition.

Since the turbulence model is calibrated from the freestream, a spectrum

parameter Sg (= kp/(kp + k t) in freestream) is generated in describing the influence

of the energy spectrum of freestream. The parameter Sg is the percentage of the

freestream turbulent kinetic energy as the boundary condition of kp equation. Thus

the value of Sg is always less than one. The flat plate transitional boundary layer is

then described by two parameters; (i) turbulent intensity Tu which represents the

amplitude of the fluctuation and (ii) spectrum parameter Sg which characterizes the

frequency feature of turbulence. Figure 3-37 shows the map of optimal values of Sg

in the simulation of various experiments if the start of transition is close to the

experiment results. From figure 3-37, Sg decreases as the fi'eestream turbulence

intensity increases although the data are somewhat scattered. This trend means that

the energy production corresponding to the transition is less for higher elevated

freestream turbulence. However, the predictions have an early start of transition for

Tu > 6% and have numerical difficulty for Sg < 0.4. Further validations are required

for these high freestream turbulence levels.
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CHAPTER FOUR

CONCLUDING REMARKS

This study contributes to the development and application of multiple-scale k-e

turbulence modeling to the transitional boundary layer with elevated freestream

turbulence levels. The conclusions of this work can be summarized as the following:

(1) A multiple-scale k-e turbulence model is developed from the split spectrum

concept and the eddy viscosity formulation. In the energy spectrum, the

turbulent kinetic energy is divided into production, transfer and dissipation

regions by wave number. The energy can be described by the cascading

process from the production region through the transfer region to the

dissipation region. The multiple-scale model models the first two regions and

assumes that all the energy is dissipated in the third region. Thus the low and

high frequency turbulent fluctuation are modeled respectively with and without

coupling of the mean flow. Unlike previous multiple-scale models, the present

model uses the net energy transfer function of turbulent energy spectrum as the

variable corresponding to the length scale in each region. In the limit, the

model becomes the single-scale k-e turbulence model if one considers the first

region only.

(2) The model constants are calibrated from the exact solutions of the simplified

multiple-scale model for grid turbulence, for homogeneous shear flow and for
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the near-wall fully turbulent equilibrium flow. In the homogeneous shear flow

calculation, the ratio between two partial kinetic energies, kt/kp, is kept

constant so that the flow can be simulated for different mean shear rates. From

these calculations, the model constants then depend on the partitioning of the

energy spectrum which is characterized by Sg (=kp/(kp +kt) ). Thus, in

boundary layer applications, the present multiple-scale k-e model constants

could be automatically tuned to the energy spectrum of the freestream. This

feature is not available in other turbulence modeling. Damping functions

with the proper magnitude variations normal to the wall are used in order to

accommodate the near-waU and transitional behavior.

(3) The Patankar-Spalding method is used in this work and the calculations show

that the solutions are independent of the starting location and initial profiles.

Five different sets of experimental data from different wind tunnels are used in

evaluation of the turbulence model. The results show that the model can

capture most of the features of transition, such as (i) progressive change from

laminar to fully turbulent flow in each variable; (ii) as freestream turbulence

level increases, the onset of transition moves upstream; (iii) enhanced heat

transfer is obtained at elevated freestream turbulence intensity and (iv) negative

normal mean velocities are obtained in the near-wall region during transition.

However the model yields earlier than experimental transition at high

freestream turbulence levels (Tu > 6%) and transition-lengths that are too

short.
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(4) In the multiple-scale model, the influence of elevated ffeestream turbulence

level for transitional boundary layers is categorized by two parameters, the

turbulence intensity Tu and the spectrum parameter Sg. The former has been

used in representing the effect of freestream turbulence intensity. The

introduction of Sg is the first attempt to involve the frequency spectrum in k-e

type turbulence modeling. However, the actual value of Sg is difficult to

determine since it could be affected by many factors. These factors can be (i)

from the facility, such as the location of the turbulence-generating grid, the

contraction ratio of settling chamber, etc. and (ii) from the environment, such

as roughness of plate, acoustic wave and the shape of leading edge, etc.

Further investigation is necessary to understand those factors in the

improvement of multiple-scale turbulence modeling.
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APPENDIX A

DERIVATION OF THE MULTIPLE SCALE TURBULENCE MODEL

This appendix presents the derivation of the proposed turbulence model by the

multiple scale concept. The conventional k-e model can be obtained by considering

only one splitting wavenumber. The double-scale model is the one shown in Chapter 2

and applied in this work. The equations are derived in tensor notation.

A.1. Partial Turbulent Kinetic Energy Equations

The dynamic equation of the incompressible, two-point velocity correlation for

anisotropic inhomogeneous turbulence can be written as (Hinze, 1975)

(A-l)
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wherethe subscripts A and B refer to points in the flow, and U k is the mean velocity.

The mean values of the various correlations of the turbulence quantities are functions

of the mid-location of these two points (x k)An and the distance between them _k,

they are defined as

1

('_k)A8--_[(_k)A+(_k)_] (A-2)

_k=('_k)B--(_k)A (A-3)

In this dynamic equation (A-l), the correlation, after carrying out an averaging

procedure with respect to time, are

_,j =o_,j(xj,r2,x_,,_,,2, ¢3,t): (,,,)A(uj)B (A-4a)

Si,kj - Si,kj (Xl,X2,X3, _ l, _2, _3,t) = (ui ) A (Uk )B(Ztj )B (A-4b)

Sik,j =- Sik,j(Xl,X2,X3, _l, _2, _3,t) = (Ui )A (Uk )A(Uj )B (A-4c)

Kp,j - Kp,j(Xl,X2,X3, _1, _2, _3, t) = (P) A (Uj )B (A-4d)

Ki, p - Ki,p(Xl,X2,X3, _l,_2, _3,t) = (Ui )A(P)B (A-4e)

where u and p are instantaneous fluctuation velocity and pressure. If the turbulence is

homogeneous, all the derivatives with respect to (x k)AB will vanish. First, we make
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an approximation of small _k which gives the direct connection to the one-point

Reynolds stress equation for (2j (_k = 0).

(°) Q_,jO__cnQi,j+(Uk)AB _ AB

1 ,9 3

,[co) {o)Kp,j+ __ AB AB

( OUk'_ O ,..,

+t-g, ?,

O_,j+2 v O_,j
+ _kOXk AB O_kO_k

..1

8 °3Xl°3Xm AB "_k AB

(A-5)

The inhomogeneous terms are analogous to the corresponding terms in one-point

equation. The terms involving _k derivatives can be treated as in the homogeneous

anisotropic turbulence and the last two terms are approximated from Taylor series

expansions. The last term can be neglected because it is second order in _k- Now,

the Fourier transforms Ei,j, Fi,kd and H i,p of the correlation tensors Q/,j, Si,kj and

Ki,p are introduced:

Q_,j = ff_ Ei,j( K1, K2, r,3,t)e_rt_tdrldlC2dr,3
(A-6a)
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Si,kj = _ Fi ,kj ( r l , 1¢2 , _:3 , t )e t_Ct_ldlc ldJc 2d_ 3 (A-6b)

Ki,p = _ Hi,p( _l, _¢2, _¢3,t)etrt_t dtcld_2dt¢3 (A-6c)

and similarly for Sik,j and Kp,j. In these transforms, lci is the wave number and t is

the complex number 4-L--]. The integrations are performed for the whole wave number

range, i.e. from --.o to +**, in each direction. Thus, we have the dynamic equation for

the energy spectrum function Ei,j

D

Dt Ei ,j = d)i ,j + _oi,j - Oi ,j - Oi,j + zci,j + Zi ,j + cri ,j -- _i ,j + llli ,j
(A-7)

where D---E ' =l_+Ul-_t ]Ei'JDt' 'j (A-Sa)

(A-Sb)

q_i,j :l_',j_-_xl J- Ei.'
(A-Sc)

% = + t,J) (A-8d)

(A-8e)

(A-80
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lfO H +0 l-I )
(A-8g)

v a
_'J = 2 Oxtoaxl Ei'j (A-8h)

coi ,j = 2 we! _lEi,j (A-8i)

(A-Sj)

Equations (Ao7) and (A-8) are obtained after integration by parts with respect to K:!

and assuming

lim E i,j = 0 (A-9)
_'t ---_+oo

Define the partial Reynolds stress Ri(,7) as the partial integration over the m-th slice of

the energy spectrum (see figure A-1),

_'m

R(m),,J= Jr,,,._1 E i,jdlc
(A-10)

where K is the three-dimensional spectrum wave number. The transport equation of

the partial Reynolds stress can be obtained by partial integration of equation (A-7).

The integration yields
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D__D_R(.m) = D.(m) + p(m.) + F(m.-1) _ F(m.) + 1-i!m) (m)
Dt l,g _,j z,g s,g _,g _,g - ei,j

(A-11)

where

(A- 12a)

Pi(m ) _ _R(m ) 3U i _R(m ) OUj (A-12b)

,J Jo - Dt
(A-12c)

'J Dt
(A-12d)

n!m ) = f:=
_i ,j dr

t,J ,11¢m_1
(A-12e)

e!m) firm'= coi,jd_¢ (A-120
! ,J -1

Each term in equation (A-11) can be imerpreted as follows:

D!m ) is the diffusion term composed of the triple velocity correlation, the
i,J

pressure-velocity correlation and the molecular diffusion.
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p/(.m) is the turbulence production from the mean shear within the m-th region.,J

F/(m.-1) _ F(m.) is the net partial turbulent energy flux in spectral space. There
,j i,l

are three different transferring processes, they are transferred by inertial

cascade, by distortion of mean shear and by influence of the variation of wave

number.

I-I_,_.) is the redistribution of partial turbulent kinetic energy by pressure

deformation correlation. This pressure term will vanish in the contracted

equation, and

e.tm.) is the viscous dissipation in the m-th region.
I,J

Contracting the partial Reynolds stress equation (A-11), yields the partial turbulent

energy equation for the m-th region of the spectrum

De(m) = D(m) + p(m) + F(m-1) _ F(m) _ _(m) (A- 13)
Dt

where e (m) = 1 R!m) D(m) = I D(m ) (A-14a, b)
2 t,t 2 _

p(m) = 1 p(.m) e(m) = 1_.e(.m.) (A-14c,d)
2 a,_ 2 a,_

F (m) = IF.(m) F (m-l) = 1F(.m-1) (A-14e,f)
2 a,I 2 z,a
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J

The turbulence energy flux across the energy spectrum F (m), which is continuously

transferred to even higher wave region, can be written explicitly as

F (m) =F (m) -E (m) Drm (A-I5)
r m Dt

" k jJo
(A-16a)

E(m) = 1E(.m ) (A-16b)
2 t¢

and D_Cm O_¢m " c?_¢m (A-16c)
Dt = "_-+UI Ox!

In each slice of the spectrum, the turbulent energy generated by mean shear in the

production terms, is then transferred into the higher wave number region accompanied

with the diffusion and dissipation. In the lowest wave number region, m = 1 and

F (0) = 0. As for the highest wave number region where the wave number ranges

from rm to infinity, we may assume that the dissipation equals the energy transferred

from the lower wave number region, e (m) = F (m-l).

In the single-scale equation, such as the k-t_ model, which does not consider the

energy cascade in the energy spectrum, the turbulent energy e (1) is approximated as

the total turbulent kinetic energy k, and the turbulent fluxes are F (1) = e (2) = E and

F (0) = e (1) = 0. Equation (A-13) becomes the total turbulent kinetic energy equation.
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Dk

-_- =/3k + Pk- e (A-17)

where D k and Pk are diffusion and production of k respectively.

A.2. Energy Flux Equations

It is assumed that the averaged energy spectrum function of the m-th region is

approximated by the partial turbulent kinetic energy per spectrum interval

L(E'm) + E(m-1) )= J_m
2"

e(m)

lCm - Kin-1
(A-18)

with E (0) = 0 and _¢0 = 0. It is also assumed that the wavelength interval of the m-th

region of the energy spectrum is inversely proportional to the characteristic length

scale,

t¢m - I¢m_ 1 = _ (A-19)

where a m and tim are constants. The length scale can be represented by

e(m)] /2
(A-20)

gt m) = F(m) _F(m-l)
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wherethe denominatoris the net change of energy transfer function across the m-th

slice of spectrum. This is different from Schiestel's (1987) assumption which uses

F (m) instead of F (m) -F (m-l) to represent the length scale. It is further assumed

that the spectral transfer of turbulent energy F (m) is represented as

F(m) = ,),m[E(m) ]3/2 kflm/2 (A-21)

where Yra is a constant. It is based on the dimensional analysis and is similar to the

Kovasznay hypothesis (see Monin and Yaglom 1971). The direct derivative of

equation (A-19), with the substitution of equations (A-13), (A-15), and (A-18) to (A-

21), yields

DE (m)

Dt
DE (m-l) 3 F (m)-F (m-l) [D(m ) p(m) e(m)]y + -

Otm Dt Dt 2 e (m)

(A-22)

m [e(n)] 5/2
where E (m) = 2 E(--1) n+l fin

n=l an F(n)-F(n-1)
(A-23)

tn___l m=0

F(n) _F(n-l)

G (m)= a m [e(m)]3/2 m>l

(A-24)

and {o[ ][ ] m--O  m-MYm E(m) U2 G(m) 5/2 _ F(m)/E(m ) 0 < m < M (A-25)
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Equation (A-25) implies that the first wave numberis zeroand beyondthe cut-off

wavenumber(m = M) D_cm �Dr is negligible. Thus, equation (A-22) is the energy

flux equation. In single-scale turbulence, such as the k-e model, x is located at very

high wave number and inversely proportional to the characteristic length

F (1) E

If =.O_r e(1)]3/2 - O_k--f[ff (A-26)
[ J

The energy flux equation becomes the turbulent dissipation rate equation

k _2De _ 3 e Dk + CiPk - C2 (A-27)
Dt 2 k

where from (A-22) C 1 = 3/2 which is close to the standard k-e. model constant
3 1

---+--- ]axx/_.
Cel =1.44, and C2 2 2fl

A.3. Two-scales Turbulence Model

If we split the energy spectrum into three regions, the lowest region is the

turbulent energy production region which has no dissipation, the middle region is the

transfer region which transfers the energy ,into the higher wave number region without

any energy production, and the last one is the viscous dissipation dominant region (as

shown in Figure A-2). We write



128

kp = e (1) k t = e (2) (A-28a, b)

e v = F (1) and e t = F (2) - F (D (A-28c,d)

Here, subscript p and t denote the production region and transfer region respectively.

In the last spectrum sectiort, the equilibrium is supposed to prevail, then real energy

dissipation rate e is the sum ofep and e t. From equation (A-13) and (A-22), the two-

scale turbulent model equations are

Dt =DkP -ep (A-29)

Dk
--._.._L= Dk t _ et (A-30)
Dt

Dep=Dep+CplPkep 4 (A-31)
D' kp -%2 kp

DEt (_p) 3/2E2p Ct2_t (A-32)Dt = Det + Ct I kp

3 ep 3 Et _

whereD_- 2kpOkpandO,,=_VzJk,. Here,anC'sareconstants,Ok_(D_)

and Dk_ (De_) are turbulent energy diffusion (energy transfer function) in production

and transfer regions respectively; and Pk is the generation of turbulent energy in

production region.
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Figure A-I Sketch of spectral partitioning for m-th shell in three-

dimensional wave number space
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Figure A-2 Spectral division of turbulent energy and energy transfer

function for two-scale turbulence model.



APPENDIX B

CALIBRATION OF MODEL CONSTANTS

It has been observed that there are certain flows for which the double-scale

turbulence model constants can be determined. The flows used here are the grid

turbulence, the homogeneous shear flow and the near-wall equilibrium turbulent flow.

The application of the model to each flow provides different relationships between the

model constants. These constants are then determined by the experimental data and

the energy spectrum of grid turbulence for transitional boundary layer calculation.

B.I Grid Turbulence

Grid turbulence is generated by the flow through a grid or mesh composed of

single or double rows of round and/or square bars. After the build-up period, the flow

is almost homogeneous and isotropic, then the turbulence decays monotonically.

There is no turbulent production in the flow and the diffusion is negligible. The

turbulence model can be simplified into one-dimensional equations as follows:

U-_ ---Ep (B-I)

U -'-t= _et {B-2)
dr
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(B-3)

:" ._3/2 E2

kp K 03-4)

Equations (B-l) and (B-3) are independent of the other two equations and can be

solved analytically. The exact solutions, subject to the initial conditions kp = kpo and

Ep = Epo at x=x O, are

kp

kpo

= I+ epO tl -n

kpo n)
(B-5)

(B-6)

x-x 0 1
where t = _ and n = -- (B-7a, b)

U Cp2-1

Since the flow is homogeneous the ratio kt/kp is a constant rg which characterizes

the shape of the spectrum, then equation (B-l) and 03-2) give et/ep be the same

constant. From the homogeneous assumption and equation (B-5), we know that the

total turbulent kinetic energy k (= kp + kt) will follow the same decay law. Thus,

equations 03-3) and 03-4) give

_gCtl+Cp2 =Ct2 (B-8)
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This equation is valid as long as the turbulence is homogeneous and follows the power

law decay. As is well known (Batchelor and Townsend, 1948a, 1948b; Comte-Bellot

and Con-sin, 1966, 1971) the exponent of decay is from 1.11 to 10/7 during the initial

period and up to 2.5 in the final period. To simulate both conditions, Nagano and

Tagawa (1990) suggested that equation 03-3) should be modified as

de___pc, =-c::: ¢
dr ..p

03-9)

2
(B-10)

where R t = k2/ve is the turbulent Reynolds number; e= ep +et is the turbulent

energy dissipation rate which is just the energy transferred from the transfer region to

the dissipation region; and Ap and Bp are constants. Substituting equations (B-5)

and 03-6) into (B-9), we obtain

c::: =(.+1)/,, 03-11)

If we take n = 1.1 for the initial period (R t is large, fp2 = 1), the model constant Cp2

is 1.9. In the final period, we obtain Ap =0.3 by substituting n=2.5 and Cp2 =1.9

into equation 03-11). The other constant Bp=6 is determined by numerical

optimization. Comparing with the experimental data of Batehelor and Townsend

(1948), as shown in Figure B-I, the modified equation 03-9) predicts both initial and

final periods well.
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B.2 Homogeneous Shear Flow

The concept of homogeneous turbulence with a uniform mean shear has long

been used in verification of turbulence modeling. The flow is subjected to the

turbulence by uniform shear only, there is no solid wall in the flow and diffusion is

small. In this flow, the turbulent Reynolds number is large and all the damping

functions are unity. From equations (A-29) to (A-32), the turbulence model can be

written as

k3/2

U____=Cl_S2(kp+kt) 1/2 P
Ep

_-- Ep
03-12)

u dkt =_et 03-13)
dr

U dep _/2 1/2 _ C,,: e2p
---_=CplCl_S2(kp +kt) kp (B-14)

_" kp

03-15)

where S = dU/dy is a constant by definition and the eddy viscosity is characterized in

the production zone by the length scale (k 3/2//ep ) and the velocity scale (kp + k t)1/2.

It is reasonable to assume that the ratio of partial turbulent kinetic energy kt/k p = rs is

a constant. With this assumption, equations 03-12) and 03-14) can be combined as
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dip = Cia( 1+ rs)l/2( Cpl _ 1) _( Cp 2 _ 1)(p2
dr

(B-16)

where ¢ = ep/(kpS) is the time scale ratio between mean shear and turbulence; and

z= S(x- x o)/U is the nondimensional convection time. Here x o is the virtual origin

location and hereafter the subscript 0 denotes the initial conditions. There is an

equilibrium point (long-time solution) to equation (B-16), which is

where y = Cp2 - 1 03-17a, b)

Cp1-1

Therefore, at the equilibrium point, the ratio between production Pk and the energy

transfer function ep becomes a constant

= y fB-18)

Now, consider that the mean velocity U is the characteristic mean velocity which is

function of y only and is typically taken to be the eenterline mean velocity of the

uniform mean shear. If we assume that the initial conditions are kp = kpO and

ep = epO at x = Xo, then equation (B-16) can be integrated directly. The transient

solution of _ is

[_ coth(a"r+b) for tp0 > _oo'it'= tanh(ax+b) for 90 < O.o
03-19)
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where a=¢_(Cp2-1), b =-/In _° +_-_-[ and
2 ¢0

4po = EP0
kpoS

(B-20a,b,c)

Hence, the kp equation becomes

_Pap _ JOo_[ytanh(ar+b)-coth(az+b)]kp for

d--T- [Ooo[ycoth(az+b)-tanh(az+b)]kp for
03-21)

The integration of equation (B-21) yields

k coshb J

"eosh(az+b)] -a

(B-22)

where o_= ]/(Cp2-1) and fl= ]/(Cp1-1). Consequently, the solution for Ep is

kpo)l, ¢o)

( * P )( tP" _tanh(az+ b )

kpO)k ¢o)

for _o > _=
(B-23)

for Oo < _p._

From these equations, the long-time solutions of kp and ep will grow exponentially at

the same rate

epk p e z'r and e A'r

kpo epO
(B-24a, b)
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where ,X= (y- 1)(1+rs)1/4C_/r. from equations (B- 12 ) and (B-13 ), we have

F'{F,J=- [V -{k,j{ k,; _2
(B-25)

Thus, et/e p is generally not a constant but depends on time, (since kt/k p = rs was

assumed constant)

(0)) forEt = (B-26)

but at the equilibrium point, (et/ep)oo reaches the constant rs(1- y). From equations

(B-14) and (B-15), we have

l_,l_p fldf F't l= tCtl4/2 Ct 2rs_._P)(F'tI2-CplY-_-I_P I+Cp21--_P l}2
(B-27)

At the equilibrium point, Ctl and Ct2 are related to other model constants such as:

Ec,, -(r-l) _% =(1-r)(cp;v-c_) (B-28)

Physical experiment and direct numerical simulation, such as by Rose (1960),

Champagne et al. (1970), Harris et al. (1977), Tavoularis et al. (1981), and Rohr et al.

(1988), indicate that the ratio of production over dissipation, Pk/e, remains a constant

between 1.8 to 2.0. Also from the experiment (RogaUo, 1981) and theoretical analysis



138

(Tavoularis, 1985), the turbulent kinetic energy and dissipation rate grow

exponentially for long times. Now, write equation (B-18) as

l+rs (8-29)
(E/p,)oo+rs

where e = ep + et. If we define the partition of the energy spectrum (i.e. define rs),

then the constant y is fixed. It follows that the model constants Cpl can be calculated

by equation (B-17b), and Ctl, Ct2 can be obtained by solving equations (B-g) and (8-

2S).

(B-31)

From these results, we know that the model constant Cp2 depends on the decay law

of the grid turbulence only, however, Cpl, Ctl and Cl2 depend on both the

characteristics of homogeneous shear flow and grid turbulence. Figure B-2 shows that

Ctl and Ct2 vary with rg, in other words, they depend on the energy spectrum

considered. When rg = 0 and rs = 0, the model becomes the single-scale k-e model

and the model constants are Cp! = 1.45 and Cp2 = 1.90 which are very close to the

standard k-e model constants Cel = 1.44 and Ce2 = 1.92.

In physical experiments, the total turbulent kinetic energy k (= k s, + kt) is the

only measured quantity. The turbulent dissipation rate e (= ep + et) is computed fi'om
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the turbulent kinetic energy equation. In order to compare with experimental data, the

initial condition ¢0 should be written in terms of (e/kS)o. From the definition of

and equation (B-26), we have

1 e + _ 2
(I3-32)

Consequently, the ratios k/k o and e/c o are computed from the following

k kp and e_ ep [1+rs(1-t"c_2/¢2)]

j (B-33a, b)

Direct comparisons with the experiments of Champagne et al. (1970, hereatter called

CHC) and Harris et al. (1977, hereatter called HGC) are shown in Figures B-3. The

initial dissipation has some uncertainty in the CHC case. Here, the initial condition of

(e/kS)o is set at 1.3 as suggested by Speziale et al. (1989). The experimental data of

HGC has higher shear rate (S= 44s -1) than that for CHC (S=12.9 s -l) and

represents a more stringent test. For proposed model the data suggest that rs = 0.3

mimics both cases well, which the single scale model (rs = 0) shows much higher

energy levels. In Figure B-4, the time evolution of kinetic energy is compared with the

experiment of Tavoularis and Corrsin (1981, hereatter called TC) which also has high

shear rate (S=46.8 s-l). By comparison with the experimental data, the double-

scale model yields a much improved solt_tion for the turbulent kinetic energy. It

should be noted that "r=0 in the Figure B-4 corresponds to _=6.67 in the

experiment of TC.
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In Figures B-5 and B-6, the time evolution of turbulent kinetic energy and

dissipation rate are compared with the large eddy simulation (LES) by Bardina et al.

(1983). When r_ is within 0.2 to 0.3, the prediction of kinetic energy is in good

agreement with the large-eddy simulation results, however, dissipation rate is generally

lower. This trend is very similar to the results by the Reynolds stress model as shown

in Speziale et al. (1989).

In this work, we define n= l.1, rs =0.3, and Pk/e= 2.0, therefore, Cpl and

Cp2 are 1.55 and 1.90 respectively. The constants Ctl and Ct2 will depend on the

energy spectrum in the external flow of the transitional boundary layer.

B.3 Near-Wall Equilibrium Turbulent Flow

In the near-wall region, the convection effects are small compared with the

diffusion effects and can be neglected. We assumed that the flow is in equilibrium, i.e.

the production of turbulent kinetic energy is approximately equal to the dissipation

rate. It is written as

Pk Cp(kp " _kp(OU_2: (B-34)

Because the turbulent kinetic energy is contributed to largely from the large size eddies

(low wavenumber production region), we assume that the net energy transfer rate of
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the transferregionis almostzero, i.e. e t -- O. In this flow, the molecular diffusion is

much less than the turbulent diffusion (v<< vt) and can be neglected. Then the

turbulence model equations are approximated as

03-35)

03-36)

t_,l Vt °3_P)+(CpI_Cp2)E2p =o
_ tYep kp

03-37)

2 e2
ep Ct2_ -Lt =0

kp gt

03-38)

Since e t = 0 in the flow, equation 03-38) tells that

03-39)

the ratio of kinetic energy kt/k p is also small and can be neglected. Now, consider

the logarithmic region of turbulent boundary layer in which the mean velocity profile

follows

U_I ln(Y___Uvz) + E 03-40)
Uz t¢
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where K and E are constants and U, = .f_-_w/P is the friction velocity. Since the shear

stress in the logarithmic layer is assumed constant, the solution of equation (B-35) and

(B-37) are similar to the single-scale k-e model results,

2 U 3
kp = _,Uz -_ (B-41 a,b)

ep-- T

If we take C/_ = 0.09 and 1¢= O. 4 in the double-scale model, the model constant O'ep

becomes 1.5. In the single-scale model (r s =0), we have Crep =1.2 which is lower

than the standard k-e model constant o"e = 1.3. Therefore, in order to minimize the

modification of model constants, it is adjusted to retain the typical values. In this

work, we propose that tXkp = akt = crk = 1.0, and Crep = get = t_e = 1.3 as in the

standard k-e model.
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Figure B-I Decay law of homogeneous turbulence: comparison with the

experiment of Batchelor and Townsend (1948).
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Figure B-6 Time evolution of the turbulent dissipation rate for homo-

geneous shear flow: comparison of the model with the large-eddy

simulation ofBardina et al. (1983).



APPENDIX C

DERIVATION OF RESHOTKO PROFILE IN

DESCRIBING INITIAL TURBULENT KINETIC ENERGY

This appendix presents the derivation of Reshotko's solution in describing the

initial profiles of turbulent kinetic energy. To develop the formulation, it is assumed

that the velocities satisfy the Blasius equation 2f"+f_ =0 with the similarity

variable r/= y Ux[-_e/vx and boundary conditions f(O) = f'(O) = 0, f'(oo) = 1. The

velocity can be written as

u =Uef" (c-1)

The differential of equation (C-1) yields

du-dr,(/. +1_ v,
\ 2 J 2x

(c-2)

At a fixed x location (dr = 0), equation (C-2) implies that the velocity fluctuation dU

is proportional to the flee-stream velocity fluctuation dU e . Since the turbulent kinetic

energy is proportional to (dU) 2, Reshotko's profile is defined as

(C-3)
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